Character table for the D31 point group

D31     E        2 C31    2 C31^2  2 C31^3  2 C31^4  2 C31^5  2 C31^6  2 C31^7  2 C31^8  2 C31^9  2 C31^10 2 C31^11 2 C31^12 2 C31^13 2 C31^14 2 C31^15 31 C2'      <R> <p> <—d—> <——f——> <———g———> <————h————> <—————i—————> 
A1      1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000     ... ... ....T ....... ........T ........... ............T
A2      1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000 -1.00000     ..T ..T ..... ......T ......... ..........T .............
E1      2.00000  1.95906  1.83792  1.64153  1.37793  1.05793  0.69461  0.30286 -0.10130 -0.50131 -0.88079 -1.22421 -1.51752 -1.74869 -1.90828 -1.98974  0.00000     TT. TT. ..TT. ....TT. ......TT. ........TT. ..........TT.
E2      2.00000  1.83792  1.37793  0.69461 -0.10130 -0.88079 -1.51752 -1.90828 -1.98974 -1.74869 -1.22421 -0.50131  0.30286  1.05793  1.64153  1.95906  0.00000     ... ... TT... ..TT... ....TT... ......TT... ........TT...
E3      2.00000  1.64153  0.69461 -0.50131 -1.51752 -1.98974 -1.74869 -0.88079  0.30286  1.37793  1.95906  1.83792  1.05793 -0.10130 -1.22421 -1.90828  0.00000     ... ... ..... TT..... ..TT..... ....TT..... ......TT.....
E4      2.00000  1.37793 -0.10130 -1.51752 -1.98974 -1.22421  0.30286  1.64153  1.95906  1.05793 -0.50131 -1.74869 -1.90828 -0.88079  0.69461  1.83792  0.00000     ... ... ..... ....... TT....... ..TT....... ....TT.......
E5      2.00000  1.05793 -0.88079 -1.98974 -1.22421  0.69461  1.95906  1.37793 -0.50131 -1.90828 -1.51752  0.30286  1.83792  1.64153 -0.10130 -1.74869  0.00000     ... ... ..... ....... ......... TT......... ..TT.........
E6      2.00000  0.69461 -1.51752 -1.74869  0.30286  1.95906  1.05793 -1.22421 -1.90828 -0.10130  1.83792  1.37793 -0.88079 -1.98974 -0.50131  1.64153  0.00000     ... ... ..... ....... ......... ........... TT...........
E7      2.00000  0.30286 -1.90828 -0.88079  1.64153  1.37793 -1.22421 -1.74869  0.69461  1.95906 -0.10130 -1.98974 -0.50131  1.83792  1.05793 -1.51752  0.00000     ... ... ..... ....... ......... ........... .............
E8      2.00000 -0.10130 -1.98974  0.30286  1.95906 -0.50131 -1.90828  0.69461  1.83792 -0.88079 -1.74869  1.05793  1.64153 -1.22421 -1.51752  1.37793  0.00000     ... ... ..... ....... ......... ........... .............
E9      2.00000 -0.50131 -1.74869  1.37793  1.05793 -1.90828 -0.10130  1.95906 -0.88079 -1.51752  1.64153  0.69461 -1.98974  0.30286  1.83792 -1.22421  0.00000     ... ... ..... ....... ......... ........... .............
E10     2.00000 -0.88079 -1.22421  1.95906 -0.50131 -1.51752  1.83792 -0.10130 -1.74869  1.64153  0.30286 -1.90828  1.37793  0.69461 -1.98974  1.05793  0.00000     ... ... ..... ....... ......... ........... .............
E11     2.00000 -1.22421 -0.50131  1.83792 -1.74869  0.30286  1.37793 -1.98974  1.05793  0.69461 -1.90828  1.64153 -0.10130 -1.51752  1.95906 -0.88079  0.00000     ... ... ..... ....... ......... ........... .............
E12     2.00000 -1.51752  0.30286  1.05793 -1.90828  1.83792 -0.88079 -0.50131  1.64153 -1.98974  1.37793 -0.10130 -1.22421  1.95906 -1.74869  0.69461  0.00000     ... ... ..... ....... ......... ........... .............
E13     2.00000 -1.74869  1.05793 -0.10130 -0.88079  1.64153 -1.98974  1.83792 -1.22421  0.30286  0.69461 -1.51752  1.95906 -1.90828  1.37793 -0.50131  0.00000     ... ... ..... ....... ......... ........... .............
E14     2.00000 -1.90828  1.64153 -1.22421  0.69461 -0.10130 -0.50131  1.05793 -1.51752  1.83792 -1.98974  1.95906 -1.74869  1.37793 -0.88079  0.30286  0.00000     ... ... ..... ....... ......... ........... .............
E15     2.00000 -1.98974  1.95906 -1.90828  1.83792 -1.74869  1.64153 -1.51752  1.37793 -1.22421  1.05793 -0.88079  0.69461 -0.50131  0.30286 -0.10130  0.00000     ... ... ..... ....... ......... ........... .............

 Irrational character values:  1.959059882505 = 2*cos(2*π/31)
                               1.837915623240 = 2*cos(4*π/31)
                               1.641526882415 = 2*cos(6*π/31)
                               1.377933838151 = 2*cos(8*π/31)
                               1.057928020654 = 2*cos(10*π/31)
                               0.694610505690 = 2*cos(12*π/31)
                               0.302855555009 = 2*cos(14*π/31)
                              -0.101298337677 = 2*cos(16*π/31)
                              -0.501305064517 = 2*cos(18*π/31)
                              -0.880788303115 = 2*cos(20*π/31)
                              -1.224211965095 = 2*cos(22*π/31)
                              -1.517516245386 = 2*cos(24*π/31)
                              -1.748693232289 = 2*cos(26*π/31)
                              -1.908278512800 = 2*cos(28*π/31)
                              -1.989738646784 = 2*cos(30*π/31)



 Symmetry of Rotations and Cartesian products

A1   d+g+i+k+m              z2, z4, z6 
A2   R+p+f+h+j+l            Rz, z, z3, z5 
E1   R+p+d+f+g+h+i+j+k+l+m  {Rx, Ry}, {x, y}, {xz, yz}, {xz2, yz2}, {xz3, yz3}, {xz4, yz4}, {xz5, yz5} 
E2   d+f+g+h+i+j+k+l+m      {x2y2, xy}, {z(x2y2), xyz}, {z2(x2y2), xyz2}, {z3(x2y2), xyz3}, {z4(x2y2), xyz4} 
E3   f+g+h+i+j+k+l+m        {x(x2−3y2), y(3x2y2)}, {xz(x2−3y2), yz(3x2y2)}, {xz2(x2−3y2), yz2(3x2y2)}, {xz3(x2−3y2), yz3(3x2y2)} 
E4   g+h+i+j+k+l+m          {(x2y2)2−4x2y2, xy(x2y2)}, {z((x2y2)2−4x2y2), xyz(x2y2)}, {z2((x2y2)2−4x2y2), xyz2(x2y2)} 
E5   h+i+j+k+l+m            {x(x2−(5+2√5)y2)(x2−(5−2√5)y2), y((5+2√5)x2y2)((5−2√5)x2y2)}, {xz(x2−(5+2√5)y2)(x2−(5−2√5)y2), yz((5+2√5)x2y2)((5−2√5)x2y2)} 
E6   i+j+k+l+m              {x2(x2−3y2)2y2(3x2y2)2, xy(x2−3y2)(3x2y2)} 
E7   j+k+l+m 
E8   k+l+m 
E9   l+m 
E10  m 

 Notes:

    α  The order of the D31 point group is 62, and the order of the principal axis (C31) is 31. The group has 17 irreducible representations.

    β  The D31 point group is isomorphic to C31v.

    γ  The D31 point group is generated by two symmetry elements, C31 and a perpendicular C2.
       Also, the group may be generated from any two C2 axes.

    δ  The group contains one set of C2 symmetry axes perpendicular to the principal (z) axis. The x axis (but not the y axis) is a member of that set.

    ε  The lowest nonvanishing multipole moment in D31 is 4 (quadrupole moment).

    ζ  This point group is non-Abelian (some symmetry operations are not commutative).
       Therefore, the character table contains multi-membered classes and degenerate irreducible representations.

    η  The point group is chiral, as it does not contain any mirroring operation.

    θ  Some of the characters in the table are irrational because the order of the principal axis is neither 1,2,3,4 nor 6.
       These irrational values can be expressed as cosine values, or as solutions of algebraic equations with a leading coefficient of 1.
       All characters are algebraic integers of a degree just less than half the order of the principal axis.
       For this group, however, none of the irrational characters can be expressed by a closed algebraic form using real numbers only.

This Character Table for the D31 point group was created by Gernot Katzer.

For other groups and some explanations, see the Main Page.