Character table for the D5d point group

D5d     E       2 C5    2 C5^2  5 C2'   i       2 S10   2 S10^3 5 sd       <R> <p> <—d—> <——f——> <———g———> <————h————> <—————i—————> 
A1g     1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000     ... ... ....T ....... ........T ........... ...T........T
A2g     1.0000  1.0000  1.0000 -1.0000  1.0000  1.0000  1.0000 -1.0000     ..T ... ..... ....... ......... ........... ..T..........
E1g     2.0000  0.6180 -1.6180  0.0000  2.0000 -1.6180  0.6180  0.0000     TT. ... ..TT. ....... TT....TT. ........... TT..TT....TT.
E2g     2.0000 -1.6180  0.6180  0.0000  2.0000  0.6180 -1.6180  0.0000     ... ... TT... ....... ..TTTT... ........... ......TTTT...
A1u     1.0000  1.0000  1.0000  1.0000 -1.0000 -1.0000 -1.0000 -1.0000     ... ... ..... ....... ......... T.......... .............
A2u     1.0000  1.0000  1.0000 -1.0000 -1.0000 -1.0000 -1.0000  1.0000     ... ..T ..... ......T ......... .T........T .............
E1u     2.0000  0.6180 -1.6180  0.0000 -2.0000  1.6180 -0.6180  0.0000     ... TT. ..... ....TT. ......... ..TT....TT. .............
E2u     2.0000 -1.6180  0.6180  0.0000 -2.0000 -0.6180  1.6180  0.0000     ... ... ..... TTTT... ......... ....TTTT... .............

 Irrational character values:  1.618033988750 = 2*cos(2*π/10) = 2*cos(π/5) = (√5+1)/2
                               0.618033988750 = 2*cos(4*π/10) = 2*cos(2*π/5) = (√5−1)/2



 Symmetry of Rotations and Cartesian products

A1g  d+g+2i+2k+3m     z2, z4, yz((5+2√5)x2y2)((5−2√5)x2y2), z6 
A2g  R+i+k+2m         Rz, xz(x2−(5+2√5)y2)(x2−(5−2√5)y2) 
E1g  R+d+2g+3i+3k+4m  {Rx, Ry}, {xz, yz}, {(x2y2)2−4x2y2, xy(x2y2)}, {xz3, yz3}, {x2(x2−3y2)2y2(3x2y2)2, xy(x2−3y2)(3x2y2)}, {z2((x2y2)2−4x2y2), xyz2(x2y2)}, {xz5, yz5} 
E2g  d+2g+2i+4k+4m    {x2y2, xy}, {xz(x2−3y2), yz(3x2y2)}, {z2(x2y2), xyz2}, {xz3(x2−3y2), yz3(3x2y2)}, {z4(x2y2), xyz4} 
A1u  h+j+l            x(x2−(5+2√5)y2)(x2−(5−2√5)y2) 
A2u  p+f+2h+2j+2l     z, z3, y((5+2√5)x2y2)((5−2√5)x2y2), z5 
E1u  p+f+2h+3j+4l     {x, y}, {xz2, yz2}, {z((x2y2)2−4x2y2), xyz(x2y2)}, {xz4, yz4} 
E2u  2f+2h+3j+4l      {x(x2−3y2), y(3x2y2)}, {z(x2y2), xyz}, {xz2(x2−3y2), yz2(3x2y2)}, {z3(x2y2), xyz3} 

 Notes:

    α  The order of the D5d point group is 20, and the order of the principal axis (S10) is 10. The group has 8 irreducible representations.

    β  The D5d point group is isomorphic to D5h, C10v and D10.

    γ  The D5d point group is generated by two symmetry elements, S10 and either a perpendicular C2 or a vertical σd.
       Also, the group may be generated from any C2 plus any σd plane.
       The canonical choice, however, is to use redundant generators: C5, C2 and i.

    δ  The group contains one set of C2 symmetry axes perpendicular to the principal (z) axis. The x axis (but not the y axis) is a member of that set.
       Reversely, the single set of symmetry planes denoted σd contains the yz plane but not the xz plane.

    ε  The lowest nonvanishing multipole moment in D5d is 4 (quadrupole moment).

    ζ  This point group is non-Abelian (some symmetry operations are not commutative).
       Therefore, the character table contains multi-membered classes and degenerate irreducible representations.

    η  Some of the characters in the table are irrational because the order of the principal axis is neither 1,2,3,4 nor 6.
       These irrational values can be expressed as cosine values, or as solutions of algebraic equations with a leading coefficient of 1.
       All characters are algebraic integers of a degree just less than half the order of the principal axis.

    θ  The point group corresponds to a constructible polygon, as the order of the principal axis is a product of any number
       of different Fermat primes (3,5,17,257,65537) times an arbitrary power of two. Therefore, all characters have an
       algebraic degree which is a power of two and can be expressed as radicals involving only square roots and integer numbers.

    ι  The fact that the regular pentagon is constructible is known since antiquity; Eukleides already discovered a construction for it.
       The double cosine of 2π/5 is equal to the reciprocal of the Golden Ratio of (1+√5)/2 = 1.61803.

This Character Table for the D5d point group was created by Gernot Katzer.

For other groups and some explanations, see the Main Page.