S34 E 2 C17 2 C17^2 2 C17^3 2 C17^4 2 C17^5 2 C17^6 2 C17^7 2 C17^8 i 2 S34 2 S34^3 2 S34^5 2 S34^7 2 S34^9 2 S34^11 2 S34^13 2 S34^15 <R> <p> <—d—> <——f——> <———g———> <————h————> <—————i—————> Ag 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 ..T ... ....T ....... ........T ........... ............T E1g * 2.00000 1.86494 1.47802 0.89148 0.18454 -0.54733 -1.20527 -1.70043 -1.96595 2.00000 -1.96595 -1.70043 -1.20527 -0.54733 0.18454 0.89148 1.47802 1.86494 TT. ... ..TT. ....... ......TT. ........... ..........TT. E2g * 2.00000 1.47802 0.18454 -1.20527 -1.96595 -1.70043 -0.54733 0.89148 1.86494 2.00000 1.86494 0.89148 -0.54733 -1.70043 -1.96595 -1.20527 0.18454 1.47802 ... ... TT... ....... ....TT... ........... ........TT... E3g * 2.00000 0.89148 -1.20527 -1.96595 -0.54733 1.47802 1.86494 0.18454 -1.70043 2.00000 -1.70043 0.18454 1.86494 1.47802 -0.54733 -1.96595 -1.20527 0.89148 ... ... ..... ....... ..TT..... ........... ......TT..... E4g * 2.00000 0.18454 -1.96595 -0.54733 1.86494 0.89148 -1.70043 -1.20527 1.47802 2.00000 1.47802 -1.20527 -1.70043 0.89148 1.86494 -0.54733 -1.96595 0.18454 ... ... ..... ....... TT....... ........... ....TT....... E5g * 2.00000 -0.54733 -1.70043 1.47802 0.89148 -1.96595 0.18454 1.86494 -1.20527 2.00000 -1.20527 1.86494 0.18454 -1.96595 0.89148 1.47802 -1.70043 -0.54733 ... ... ..... ....... ......... ........... ..TT......... E6g * 2.00000 -1.20527 -0.54733 1.86494 -1.70043 0.18454 1.47802 -1.96595 0.89148 2.00000 0.89148 -1.96595 1.47802 0.18454 -1.70043 1.86494 -0.54733 -1.20527 ... ... ..... ....... ......... ........... TT........... E7g * 2.00000 -1.70043 0.89148 0.18454 -1.20527 1.86494 -1.96595 1.47802 -0.54733 2.00000 -0.54733 1.47802 -1.96595 1.86494 -1.20527 0.18454 0.89148 -1.70043 ... ... ..... ....... ......... ........... ............. E8g * 2.00000 -1.96595 1.86494 -1.70043 1.47802 -1.20527 0.89148 -0.54733 0.18454 2.00000 0.18454 -0.54733 0.89148 -1.20527 1.47802 -1.70043 1.86494 -1.96595 ... ... ..... ....... ......... ........... ............. Au 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 ... ..T ..... ......T ......... ..........T ............. E1u * 2.00000 1.86494 1.47802 0.89148 0.18454 -0.54733 -1.20527 -1.70043 -1.96595 -2.00000 1.96595 1.70043 1.20527 0.54733 -0.18454 -0.89148 -1.47802 -1.86494 ... TT. ..... ....TT. ......... ........TT. ............. E2u * 2.00000 1.47802 0.18454 -1.20527 -1.96595 -1.70043 -0.54733 0.89148 1.86494 -2.00000 -1.86494 -0.89148 0.54733 1.70043 1.96595 1.20527 -0.18454 -1.47802 ... ... ..... ..TT... ......... ......TT... ............. E3u * 2.00000 0.89148 -1.20527 -1.96595 -0.54733 1.47802 1.86494 0.18454 -1.70043 -2.00000 1.70043 -0.18454 -1.86494 -1.47802 0.54733 1.96595 1.20527 -0.89148 ... ... ..... TT..... ......... ....TT..... ............. E4u * 2.00000 0.18454 -1.96595 -0.54733 1.86494 0.89148 -1.70043 -1.20527 1.47802 -2.00000 -1.47802 1.20527 1.70043 -0.89148 -1.86494 0.54733 1.96595 -0.18454 ... ... ..... ....... ......... ..TT....... ............. E5u * 2.00000 -0.54733 -1.70043 1.47802 0.89148 -1.96595 0.18454 1.86494 -1.20527 -2.00000 1.20527 -1.86494 -0.18454 1.96595 -0.89148 -1.47802 1.70043 0.54733 ... ... ..... ....... ......... TT......... ............. E6u * 2.00000 -1.20527 -0.54733 1.86494 -1.70043 0.18454 1.47802 -1.96595 0.89148 -2.00000 -0.89148 1.96595 -1.47802 -0.18454 1.70043 -1.86494 0.54733 1.20527 ... ... ..... ....... ......... ........... ............. E7u * 2.00000 -1.70043 0.89148 0.18454 -1.20527 1.86494 -1.96595 1.47802 -0.54733 -2.00000 0.54733 -1.47802 1.96595 -1.86494 1.20527 -0.18454 -0.89148 1.70043 ... ... ..... ....... ......... ........... ............. E8u * 2.00000 -1.96595 1.86494 -1.70043 1.47802 -1.20527 0.89148 -0.54733 0.18454 -2.00000 -0.18454 0.54733 -0.89148 1.20527 -1.47802 1.70043 -1.86494 1.96595 ... ... ..... ....... ......... ........... ............. Irrational character values: 1.965946199368 = 2*cos(2*π/34) = 2*cos(π/17) = (1−√17+√34−2*√17+2*√17+3*√17+√34−2*√17+2*√34+2*√17)/8 1.864944458809 = 2*cos(4*π/34) = 2*cos(2*π/17) = (−1+√17+√34−2*√17+2*√17+3*√17−√34−2*√17−2*√34+2*√17)/8 1.700434271459 = 2*cos(6*π/34) = 2*cos(3*π/17) = (1+√17+√34+2*√17+2*√17−3*√17+√34+2*√17−2*√34−2*√17)/8 1.478017834441 = 2*cos(8*π/34) = 2*cos(4*π/17) = (−1+√17−√34−2*√17+2*√17+3*√17+√34−2*√17+2*√34+2*√17)/8 1.205269272759 = 2*cos(10*π/34) = 2*cos(5*π/17) = (1+√17+√34+2*√17−2*√17−3*√17+√34+2*√17−2*√34−2*√17)/8 0.891476711553 = 2*cos(12*π/34) = 2*cos(6*π/17) = (−1−√17+√34+2*√17+2*√17−3*√17−√34+2*√17+2*√34−2*√17)/8 0.547325980144 = 2*cos(14*π/34) = 2*cos(7*π/17) = (1+√17−√34+2*√17+2*√17−3*√17−√34+2*√17+2*√34−2*√17)/8 0.184536718927 = 2*cos(16*π/34) = 2*cos(8*π/17) = (−1+√17+√34−2*√17−2*√17+3*√17−√34−2*√17−2*√34+2*√17)/8 Symmetry of Rotations and Cartesian products Ag R+d+g+i+k+m Rz, z2, z4, z6 E1g R+d+g+i+k+m {Rx, Ry}, {xz, yz}, {xz3, yz3}, {xz5, yz5} E2g d+g+i+k+m {x2−y2, xy}, {z2(x2−y2), xyz2}, {z4(x2−y2), xyz4} E3g g+i+k+m {xz(x2−3y2), yz(3x2−y2)}, {xz3(x2−3y2), yz3(3x2−y2)} E4g g+i+k+m {(x2−y2)2−4x2y2, xy(x2−y2)}, {z2((x2−y2)2−4x2y2), xyz2(x2−y2)} E5g i+k+m {xz(x2−(5+2√5)y2)(x2−(5−2√5)y2), yz((5+2√5)x2−y2)((5−2√5)x2−y2)} E6g i+k+m {x2(x2−3y2)2−y2(3x2−y2)2, xy(x2−3y2)(3x2−y2)} E7g k+2m E8g k+2m Au p+f+h+j+l z, z3, z5 E1u p+f+h+j+l {x, y}, {xz2, yz2}, {xz4, yz4} E2u f+h+j+l {z(x2−y2), xyz}, {z3(x2−y2), xyz3} E3u f+h+j+l {x(x2−3y2), y(3x2−y2)}, {xz2(x2−3y2), yz2(3x2−y2)} E4u h+j+l {z((x2−y2)2−4x2y2), xyz(x2−y2)} E5u h+j+l {x(x2−(5+2√5)y2)(x2−(5−2√5)y2), y((5+2√5)x2−y2)((5−2√5)x2−y2)} E6u j+l E7u j+l E8u 2l Notes: α The order of the S34 point group is 34, and the order of the principal axis (S34) is 34. The group has 18 irreducible representations. β The S34 point group could also be named C17i, because the S34 axis is identical to a roto-inversion axis of order 17. γ The S34 point group is isomorphic to C34 and C17h. δ The S34 point group is generated by one single symmetry element, S34. Therefore, it is a cyclic group. ε The lowest nonvanishing multipole moment in S34 is 4 (quadrupole moment). ζ This is an Abelian point group (the commutative law holds between all symmetry operations). The S34 group is Abelian because it contains only one symmetry element, all the powers of which necessarily commute (sufficient condition). In Abelian groups, all symmetry operations form a class of their own, and all irreducible representations are one-dimensional. η Because the group is Abelian and the maximum order of rotation is >2, some irreducible representations have complex characters. These 32 cases have been combined into 16 two-dimensional representations that are no longer irreducible but have real-valued characters. Accordingly, 16 pairs of left and right rotations have been combined into one two-membered pseudo-class each. θ The 16 reducible “E” representations almost behave like true irreducible representations. Their norm, however, is twice the group order. Therefore, they have been marked with an asterisk in the table. This is essential when trying to decompose a reducible representation into “irreducible” ones using the familiar projection formula. ι Some of the characters in the table are irrational because the order of the principal axis is neither 1,2,3,4 nor 6. These irrational values can be expressed as cosine values, or as solutions of algebraic equations with a leading coefficient of 1. All characters are algebraic integers of a degree much less than half the order of the principal axis. κ The point group corresponds to a constructible polygon, as the order of the principal axis is a product of any number of different Fermat primes (3,5,17,257,65537) times an arbitrary power of two. Therefore, all characters have an algebraic degree which is a power of two and can be expressed as radicals involving only square roots and integer numbers. λ That a regular 17-gon can be constructed with compass and ruler was unknown to mathematicians until Gauss proved it in 1796. The first actual construction was performed thirty years later by Johannes Erchinger in 1825. Regular polygons of order 34,68,136 etc are easily derived from the regular 17-gon by successive halving of angles.
S30 | ||
S32 | ||
C34 C34v C34h D34 D34h D34d | S34 | |
S36 | ||
S38 |
This Character Table for the S34 point group was created by Gernot Katzer.
For other groups and some explanations, see the Main Page.