Character table for the S46 point group

S46      E        2 C23    2 C23^2  2 C23^3  2 C23^4  2 C23^5  2 C23^6  2 C23^7  2 C23^8  2 C23^9  2 C23^10 2 C23^11 i        2 S46    2 S46^3  2 S46^5  2 S46^7  2 S46^9  2 S46^11 2 S46^13 2 S46^15 2 S46^17 2 S46^19 2 S46^21   <R> <p> <—d—> <——f——> <———g———> <————h————> <—————i—————> 
Ag      1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000     ..T ... ....T ....... ........T ........... ............T
E1g  *  2.00000  1.92583  1.70884  1.36511  0.92013  0.40691 -0.13648 -0.66976 -1.15336 -1.55142 -1.83442 -1.98137  2.00000 -1.98137 -1.83442 -1.55142 -1.15336 -0.66976 -0.13648  0.40691  0.92013  1.36511  1.70884  1.92583     TT. ... ..TT. ....... ......TT. ........... ..........TT.
E2g  *  2.00000  1.70884  0.92013 -0.13648 -1.15336 -1.83442 -1.98137 -1.55142 -0.66976  0.40691  1.36511  1.92583  2.00000  1.92583  1.36511  0.40691 -0.66976 -1.55142 -1.98137 -1.83442 -1.15336 -0.13648  0.92013  1.70884     ... ... TT... ....... ....TT... ........... ........TT...
E3g  *  2.00000  1.36511 -0.13648 -1.55142 -1.98137 -1.15336  0.40691  1.70884  1.92583  0.92013 -0.66976 -1.83442  2.00000 -1.83442 -0.66976  0.92013  1.92583  1.70884  0.40691 -1.15336 -1.98137 -1.55142 -0.13648  1.36511     ... ... ..... ....... ..TT..... ........... ......TT.....
E4g  *  2.00000  0.92013 -1.15336 -1.98137 -0.66976  1.36511  1.92583  0.40691 -1.55142 -1.83442 -0.13648  1.70884  2.00000  1.70884 -0.13648 -1.83442 -1.55142  0.40691  1.92583  1.36511 -0.66976 -1.98137 -1.15336  0.92013     ... ... ..... ....... TT....... ........... ....TT.......
E5g  *  2.00000  0.40691 -1.83442 -1.15336  1.36511  1.70884 -0.66976 -1.98137 -0.13648  1.92583  0.92013 -1.55142  2.00000 -1.55142  0.92013  1.92583 -0.13648 -1.98137 -0.66976  1.70884  1.36511 -1.15336 -1.83442  0.40691     ... ... ..... ....... ......... ........... ..TT.........
E6g  *  2.00000 -0.13648 -1.98137  0.40691  1.92583 -0.66976 -1.83442  0.92013  1.70884 -1.15336 -1.55142  1.36511  2.00000  1.36511 -1.55142 -1.15336  1.70884  0.92013 -1.83442 -0.66976  1.92583  0.40691 -1.98137 -0.13648     ... ... ..... ....... ......... ........... TT...........
E7g  *  2.00000 -0.66976 -1.55142  1.70884  0.40691 -1.98137  0.92013  1.36511 -1.83442 -0.13648  1.92583 -1.15336  2.00000 -1.15336  1.92583 -0.13648 -1.83442  1.36511  0.92013 -1.98137  0.40691  1.70884 -1.55142 -0.66976     ... ... ..... ....... ......... ........... .............
E8g  *  2.00000 -1.15336 -0.66976  1.92583 -1.55142 -0.13648  1.70884 -1.83442  0.40691  1.36511 -1.98137  0.92013  2.00000  0.92013 -1.98137  1.36511  0.40691 -1.83442  1.70884 -0.13648 -1.55142  1.92583 -0.66976 -1.15336     ... ... ..... ....... ......... ........... .............
E9g  *  2.00000 -1.55142  0.40691  0.92013 -1.83442  1.92583 -1.15336 -0.13648  1.36511 -1.98137  1.70884 -0.66976  2.00000 -0.66976  1.70884 -1.98137  1.36511 -0.13648 -1.15336  1.92583 -1.83442  0.92013  0.40691 -1.55142     ... ... ..... ....... ......... ........... .............
E10g *  2.00000 -1.83442  1.36511 -0.66976 -0.13648  0.92013 -1.55142  1.92583 -1.98137  1.70884 -1.15336  0.40691  2.00000  0.40691 -1.15336  1.70884 -1.98137  1.92583 -1.55142  0.92013 -0.13648 -0.66976  1.36511 -1.83442     ... ... ..... ....... ......... ........... .............
E11g *  2.00000 -1.98137  1.92583 -1.83442  1.70884 -1.55142  1.36511 -1.15336  0.92013 -0.66976  0.40691 -0.13648  2.00000 -0.13648  0.40691 -0.66976  0.92013 -1.15336  1.36511 -1.55142  1.70884 -1.83442  1.92583 -1.98137     ... ... ..... ....... ......... ........... .............
Au      1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000     ... ..T ..... ......T ......... ..........T .............
E1u  *  2.00000  1.92583  1.70884  1.36511  0.92013  0.40691 -0.13648 -0.66976 -1.15336 -1.55142 -1.83442 -1.98137 -2.00000  1.98137  1.83442  1.55142  1.15336  0.66976  0.13648 -0.40691 -0.92013 -1.36511 -1.70884 -1.92583     ... TT. ..... ....TT. ......... ........TT. .............
E2u  *  2.00000  1.70884  0.92013 -0.13648 -1.15336 -1.83442 -1.98137 -1.55142 -0.66976  0.40691  1.36511  1.92583 -2.00000 -1.92583 -1.36511 -0.40691  0.66976  1.55142  1.98137  1.83442  1.15336  0.13648 -0.92013 -1.70884     ... ... ..... ..TT... ......... ......TT... .............
E3u  *  2.00000  1.36511 -0.13648 -1.55142 -1.98137 -1.15336  0.40691  1.70884  1.92583  0.92013 -0.66976 -1.83442 -2.00000  1.83442  0.66976 -0.92013 -1.92583 -1.70884 -0.40691  1.15336  1.98137  1.55142  0.13648 -1.36511     ... ... ..... TT..... ......... ....TT..... .............
E4u  *  2.00000  0.92013 -1.15336 -1.98137 -0.66976  1.36511  1.92583  0.40691 -1.55142 -1.83442 -0.13648  1.70884 -2.00000 -1.70884  0.13648  1.83442  1.55142 -0.40691 -1.92583 -1.36511  0.66976  1.98137  1.15336 -0.92013     ... ... ..... ....... ......... ..TT....... .............
E5u  *  2.00000  0.40691 -1.83442 -1.15336  1.36511  1.70884 -0.66976 -1.98137 -0.13648  1.92583  0.92013 -1.55142 -2.00000  1.55142 -0.92013 -1.92583  0.13648  1.98137  0.66976 -1.70884 -1.36511  1.15336  1.83442 -0.40691     ... ... ..... ....... ......... TT......... .............
E6u  *  2.00000 -0.13648 -1.98137  0.40691  1.92583 -0.66976 -1.83442  0.92013  1.70884 -1.15336 -1.55142  1.36511 -2.00000 -1.36511  1.55142  1.15336 -1.70884 -0.92013  1.83442  0.66976 -1.92583 -0.40691  1.98137  0.13648     ... ... ..... ....... ......... ........... .............
E7u  *  2.00000 -0.66976 -1.55142  1.70884  0.40691 -1.98137  0.92013  1.36511 -1.83442 -0.13648  1.92583 -1.15336 -2.00000  1.15336 -1.92583  0.13648  1.83442 -1.36511 -0.92013  1.98137 -0.40691 -1.70884  1.55142  0.66976     ... ... ..... ....... ......... ........... .............
E8u  *  2.00000 -1.15336 -0.66976  1.92583 -1.55142 -0.13648  1.70884 -1.83442  0.40691  1.36511 -1.98137  0.92013 -2.00000 -0.92013  1.98137 -1.36511 -0.40691  1.83442 -1.70884  0.13648  1.55142 -1.92583  0.66976  1.15336     ... ... ..... ....... ......... ........... .............
E9u  *  2.00000 -1.55142  0.40691  0.92013 -1.83442  1.92583 -1.15336 -0.13648  1.36511 -1.98137  1.70884 -0.66976 -2.00000  0.66976 -1.70884  1.98137 -1.36511  0.13648  1.15336 -1.92583  1.83442 -0.92013 -0.40691  1.55142     ... ... ..... ....... ......... ........... .............
E10u *  2.00000 -1.83442  1.36511 -0.66976 -0.13648  0.92013 -1.55142  1.92583 -1.98137  1.70884 -1.15336  0.40691 -2.00000 -0.40691  1.15336 -1.70884  1.98137 -1.92583  1.55142 -0.92013  0.13648  0.66976 -1.36511  1.83442     ... ... ..... ....... ......... ........... .............
E11u *  2.00000 -1.98137  1.92583 -1.83442  1.70884 -1.55142  1.36511 -1.15336  0.92013 -0.66976  0.40691 -0.13648 -2.00000  0.13648 -0.40691  0.66976 -0.92013  1.15336 -1.36511  1.55142 -1.70884  1.83442 -1.92583  1.98137     ... ... ..... ....... ......... ........... .............

 Irrational character values:  1.981371892073 = 2*cos(2*π/46) = 2*cos(π/23)
                               1.925834574696 = 2*cos(4*π/46) = 2*cos(2*π/23)
                               1.834422603011 = 2*cos(6*π/46) = 2*cos(3*π/23)
                               1.708838809093 = 2*cos(8*π/46) = 2*cos(4*π/23)
                               1.551422581409 = 2*cos(10*π/46) = 2*cos(5*π/23)
                               1.365106286437 = 2*cos(12*π/46) = 2*cos(6*π/23)
                               1.153360644230 = 2*cos(14*π/46) = 2*cos(7*π/23)
                               0.920130075462 = 2*cos(16*π/46) = 2*cos(8*π/23)
                               0.669759224342 = 2*cos(18*π/46) = 2*cos(9*π/23)
                               0.406912026105 = 2*cos(20*π/46) = 2*cos(10*π/23)
                               0.136484826729 = 2*cos(22*π/46) = 2*cos(11*π/23)



 Symmetry of Rotations and Cartesian products

Ag   R+d+g+i+k+m  Rz, z2, z4, z6 
E1g  R+d+g+i+k+m  {Rx, Ry}, {xz, yz}, {xz3, yz3}, {xz5, yz5} 
E2g  d+g+i+k+m    {x2y2, xy}, {z2(x2y2), xyz2}, {z4(x2y2), xyz4} 
E3g  g+i+k+m      {xz(x2−3y2), yz(3x2y2)}, {xz3(x2−3y2), yz3(3x2y2)} 
E4g  g+i+k+m      {(x2y2)2−4x2y2, xy(x2y2)}, {z2((x2y2)2−4x2y2), xyz2(x2y2)} 
E5g  i+k+m        {xz(x2−(5+2√5)y2)(x2−(5−2√5)y2), yz((5+2√5)x2y2)((5−2√5)x2y2)} 
E6g  i+k+m        {x2(x2−3y2)2y2(3x2y2)2, xy(x2−3y2)(3x2y2)} 
E7g  k+m 
E8g  k+m 
E9g  m 
E10g m 
Au   p+f+h+j+l    z, z3, z5 
E1u  p+f+h+j+l    {x, y}, {xz2, yz2}, {xz4, yz4} 
E2u  f+h+j+l      {z(x2y2), xyz}, {z3(x2y2), xyz3} 
E3u  f+h+j+l      {x(x2−3y2), y(3x2y2)}, {xz2(x2−3y2), yz2(3x2y2)} 
E4u  h+j+l        {z((x2y2)2−4x2y2), xyz(x2y2)} 
E5u  h+j+l        {x(x2−(5+2√5)y2)(x2−(5−2√5)y2), y((5+2√5)x2y2)((5−2√5)x2y2)} 
E6u  j+l 
E7u  j+l 
E8u  l 
E9u  l 

 Notes:

    α  The order of the S46 point group is 46, and the order of the principal axis (S46) is 46. The group has 24 irreducible representations.

    β  The S46 point group could also be named C23i, because the S46 axis is identical to a roto-inversion axis of order 23.

    γ  The S46 point group is isomorphic to C46 and C23h.

    δ  The S46 point group is generated by one single symmetry element, S46. Therefore, it is a cyclic group.

    ε  The lowest nonvanishing multipole moment in S46 is 4 (quadrupole moment).

    ζ  This is an Abelian point group (the commutative law holds between all symmetry operations).
       The S46 group is Abelian because it contains only one symmetry element, all the powers of which necessarily commute (sufficient condition).
       In Abelian groups, all symmetry operations form a class of their own, and all irreducible representations are one-dimensional.

    η  Because the group is Abelian and the maximum order of rotation is >2, some irreducible representations have complex characters.
       These 44 cases have been combined into 22 two-dimensional representations that are no longer irreducible but have real-valued characters.
       Accordingly, 22 pairs of left and right rotations have been combined into one two-membered pseudo-class each.

    θ  The 22 reducible “E” representations almost behave like true irreducible representations.
       Their norm, however, is twice the group order. Therefore, they have been marked with an asterisk in the table.
       This is essential when trying to decompose a reducible representation into “irreducible” ones using the familiar projection formula.

    ι  Some of the characters in the table are irrational because the order of the principal axis is neither 1,2,3,4 nor 6.
       These irrational values can be expressed as cosine values, or as solutions of algebraic equations with a leading coefficient of 1.
       All characters are algebraic integers of a degree much less than half the order of the principal axis.
       For this group, however, none of the irrational characters can be expressed by a closed algebraic form using real numbers only.

This Character Table for the S46 point group was created by Gernot Katzer.

For other groups and some explanations, see the Main Page.